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Abstract—Sensing is becoming more and more pervasive.
New sensing modalities are enabling the collection of data not
previously available. Artificial Intelligence (AI) and cognitive
assistance technologies are improving rapidly. Cyber Physical
Systems (CPS) are making significant progress in utilizing AI and
Machine Learning (ML). This confluence of technologies is giving
rise to the potential to achieve the vision of ambient intelligence.
This paper describes some of the main challenges and research
directions for ambient intelligence from a CPS perspective.

Index Terms—Ambient Intelligence, Cyber Physical Systems,
Cognitive Assistance, Intelligent Systems

I. INTRODUCTION

Cyber Physical Systems (CPS) research is building solutions
to support complex systems that are often safety critical.
This includes smart cities, smart health, autonomous systems,
robotic surgery, support for first responders and many others.
Many of the current solutions and future research directions
include the use of Artificial Intelligence (AI), including cog-
nitive assistance. However, currently the level of cognitive
assistance is sometimes relatively simple or focused on a very
specific task or individual [1]. It is expected that future systems
will continue to enhance and generalize cognitive assistance to
work together with and support an infrastructure of ambient
intelligence. Ambient intelligence has many definitions [2],
[3], but we envision it as a seamless infrastructure that
integrates in-body, on-body, in-situ sensors, actuators, and
interacting cognitive assistants. As an example, for Smart
Health this may include in-body heart and insulin pumps, on
body devices that measure multiple physiological parameters,
access to medical records and medications, in-home smart
devices that monitor and aid with activities of daily living, in-
situ devices in the environment that provide information about
air pollution, temperature, flu and covid rates in a location,
etc., and associated services that exchange data and knowledge
among these modalities in order to have a holistic health
view of the person and to provide ambient intelligence to
improve health [4]. In many cases ambient intelligence may
have safety critical implications. Therefore, it is imperative
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Fig. 1. Challenges and Directions for Ambient Intelligence

that CPS technology be merged with AI to address many of
the future research challenges.

This paper highlights the research challenges for merging
CPS and AI to achieve ambient intelligence by discussing the
following areas: data collection, modeling under uncertainty,
robustness and dependability, real-time and implementation
issues, interactivity, conflicts, comprehensive context, dynamic
adaptation and learning, and security. Overall, we articulate
challenges, demonstrate that CPS is an essential component for
solving many of these challenges, and, when known, highlight
some current research that show significant promise. The areas
discussed are meant to be representative and, therefore, not
complete. See Figure 1.

II. OVERVIEW OF COGNITIVE ASSISTANCE, AMBIENT
INTELLIGENCE, AND CPS

The focus of cognitive assistance is on integrating AI with
cognitive processes and humans processes and actions. The
focus of ambient intelligence is on the physical environment
interactions with humans and AI. CPS focuse on the intersec-
tion of the cyber with the physical environment. Hence, these
three areas of research significantly overlap. In this section we
provide a brief background on each of these areas as a basis
for the remaining sections of the paper.

A. Overview of Cognitive Assistants

Cognitive Assistants are envisioned to complement human
capabilities rather than replace human capabilities [5], [6].
A cognitive assistant is a program that augments human



intelligence by offering complementary cognitive capabili-
ties to a human [6]. Cognitive assistants are also referred
to as cognitive agents [7]. Cognitive assistants are capable
of performing time-consuming, daunting or computationally
demanding cognitive tasks in which a machine achieves higher
efficiency and accuracy than a human. Some of the defining
characteristics of cognitive assistants are interactivity, context-
awareness, and adaptive learning [1], [7], [8]. Ideally, cognitive
assistants maintain an explicit model of the environment, have
one or more goals to be accomplished, perceive external
events, make plans to change the world taking into account
their goals, and finally implement them by acting upon the
environment [7]. Additional definitions of cognitive assistants
can be found in [1].

Existing cognitive assistants have a wide variety of modes of
interaction including verbal and non-verbal interaction. These
interactions are often reactive (i.e., triggered by an event)
rather than proactive. Existing cognitive assistants react differ-
ently according to different contexts, e.g., Google map reminds
the user if the target destination will be closed by the expected
time of arrival and thus provides spatio-temporal context-
aware interaction. Some cognitive assistants support users’
personal contexts (including physiological, psychological, be-
havioral contexts) and situational contexts (e.g., the Google
assistant referring to inclement weather as the user asks about
a outdoor calendar event). Currently, contexts are encoded in
the underlying system of a cognitive assistant and it identifies
the context based on user interaction or situational awareness.
While cognitive assistants have made a lot of progress in
identifying context and provide context-aware interaction for
different applications, there are still a lot of challenges for
adaptive learning. Specifically, existing cognitive assistants
still lack maturity in identifying and characterizing dynamic
environments and user behavior, resolving ambiguity, toler-
ating unpredictability, and distinguishing between signal and
noise in past interactions. Ambient intelligence might help to
bridge this gap.

B. Overview of Ambient Intelligence

Ambient intelligence refers to the use of ubiquitous smart
devices and AI such that physical environments interact intelli-
gently and unobtrusively with people (see Figure 2). Ambient
intelligence should account for peoples’ conditions and needs,
and provide services to people with customized responses. The
environments are diverse and include homes, work, hospitals,
schools, and cities. The services can be extremely broad and
can involve healthcare, daily life activities, work support, and
entertainment.

The underlying technologies required to support ambient
intelligence include: monitoring and interpreting the environ-
ment’s and user’s state, representing and dynamically updating
the information and knowledge associated with the environ-
ment, perform modeling and simulating or analyzing entities
in the environment, making decisions, taking actions, continual
learning about the environment and people, and interacting

with humans unobtrusively and with privacy, security and
safety guarantees.

Some question and answer systems and systems like Alexa
and Siri are sometimes considered as taking steps towards
ambient intelligence, But these systems tend to have limited
intelligence and may not use environment or user based
sensors to provide significant contextual understanding as a
basis for (more) intelligent services. Many challenges remain
to be solved before we achieve ambient intelligence. Some of
these challenges are discussed in this paper.

C. Overview of CPS

Many CPS are quite complicated and benefit from Machine
Learning (ML) and AI. Consequently, any advances in ML
and AI can substantially benefit CPS. Alternatively, CPS
technology provides capabilities that can support ML and AI
tasks such as cognitive assistance and ambient intelligence.
What are these CPS technologies?

In most CPS, requirements are carefully stated in a for-
mal language. Perhaps ambient intelligence can benefit from
formal specifications. Today, it is rare to see a ML or AI
solution carefully state the requirements that must be met
by the solution. CPS also address issues such as real-time,
safety criticalness, uncertainties, guarantees, and control; all
topics that can improve cognitive assistance and ambient
intelligence. For example, often a cognitive assistant must
recognize the context of a user via sensors and then decide
on an intervention, in time. Real-time scheduling and resource
assignment solutions from CPS can be applied to a cognitive
assistant.

A cognitive assistant must also be very careful with re-
spect to recommended actions or interventions and can often
take actions that are safety critical. Applying safety critical
technology such as robustness techniques, redundancy, code
verification and others can improve a cognitive assistant use
in practice. Uncertainties are rampant in ambient intelligence
environments due to many factors including environment and
human dynamics. Representing uncertainties and providing
associated guarantees are necessary. CPS have a rich set
of techniques to model uncertainties and map these to, at
least, probabilistic guarantees. Of course, ML and AI also
often address uncertainties and integrating ideas from the two
communities would be beneficial to both.

A main component of most CPS is feedback control. A rich
literature exists for controlling systems to meet performance
requirements including stability. Control theory also utilizes
careful methodologies to create solutions. Applying these
methodologies and other concepts, e.g., passivity, can improve
the performance of a cognitive assistant by providing, with
new research, carefully defined properties that one can expect
the cognitive assistant to follow. There is also a close relation-
ship between reinforcement learning and control theory.

In the remainder of this paper we address other issues where
CPS, cognitive assistance and ambient intelligence can be
mutually beneficial.



Fig. 2. Ambient Intelligence

III. DATA COLLECTION

Data collection is critical for effective ambient intelligence.
Since ambient intelligent systems are expected to interact with
dynamic user behavior and complex environments, ideally they
require life long learning [9]. There are two aspect of data
collection for ambient intelligence: CPS-related and AI or ML
related.

A. Data Collection Challenges and Opportunities for CPS

Existing cognitive assistants utilize a wide array of sen-
sors for data collection, including (i) primitive sensors, (ii)
physiological sensors, (iii) acoustic and ultrasonic sensors, (iv)
RGB cameras, (v) RGB-D and depth sensors, and (vi) GPS
and Bluetooth low energy (BLE) beacons. Primitive sensors
are used to sense the environment and users interactions with
the environment, such as, PIR motion detectors, temperature
sensors, contact sensors, light sensors, and humidity sensors.
Physiological sensors are used to measure and track changes in
physiological states of an user, e.g., skin conductance sensors
to track emotion or mood of an user, pulse oximeter to measure
oxygen saturation, or a blood glucose monitor to detect if a
diabetic patient is at risk.

The major CPS challenge is collecting real world data con-
tinuously and reliably as this affects the accuracy of decisions
made by ambient intelligence. Data collection is difficult for
several reasons, including but not limited to in-body, on-
body, in-situ sensor failure, disruption in sensor networks [10],
sensor maintenance, and data aggregation in the cloud. Using
multimodal sensor fusion can be helpful to collect relevant
ambient data and maintain some data redundancy. For instance,
collecting both depth sensor data and IMU sensor data to keep
track of user motion for indoor navigational assistance. CPS
solutions should be enhanced to characterize missing data. For
instance, user activity monitoring and tracking often suffer
from missing data. Such missing data can be attributed to a
variety of factors including device failures, system bugs, local
network connection failures, cloud errors, and battery failures.

B. Data Collection Challenges and Opportunities for ML

Another aspect of data collection is collecting the right
data for training a machine learning model to produce the
target inference, e.g., recognizing a user’s command, or other
interaction, tracking user activity, or detecting a change in a
user’s behavior. From the ML perspective the major challenges
in data collection are collecting the required amount of data for
training, obtaining realistic and comprehensive training data
that covers all expected future scenarios, and dealing with
missing data.

Ambient intelligent systems are expected to continually
learn from past data. However, the amount of available data
is often limited and data annotation might be challenging
especially for log lived and adaptive situations. Inspired from
the domain of NLP and computer vision, ambient intelligent
system can integrate transfer learning, weak supervision, and
meta learning based solutions to address the challenge of
low training data and limited annotation. For domain specific
problems with limited data and annotation, another potential
solution is knowledge integration with a specialized lexicon
or vocabulary [11], [12].

Intelligent systems often suffer from skewed training
datasets where there is more data from general or regular cases,
but fewer or none from corner cases, outliers, or rare situations.
For instance, for voice activated ambient intelligence the
speech recognition models can be trained on vast amount
of native speakers’ audio data and data without significant
background noise. However, the trained model might not
generalize to users who are not native English speakers, or
situations where there is a lot of background noise [11].
Another challenge is that the dynamic environment and user
interactions might generate new data such that the original
static training dataset is no longer representative of the new
test data. Lifelong learning can be effective in such cases [9].
Also, in safety-critical cases (e.g., robotic surgery, medical
devices, aircraft or autonomous vehicle navigation) identifying
and characterizing ’rare event’ cases are critical so that the



intelligent system does not commit fatal or serious mistakes.

IV. MODELING UNDER UNCERTAINTY

Ambient intelligence often predicts the future states of the
system, environment or human in the loop, and checks if the
prediction satisfies its requirements. With this capability, cog-
nitive assistance may take actions in advance to prevent such
predicted future requirement violations. Due to the dynamics
of environments, a key challenge of predictive monitoring is
how to account for the inherent uncertainty (e.g., due to sensor
and environmental noise, unexpected events, accidents, and in-
dividual personal behaviors) in the environment. Therefore, it
is necessary for ambient intelligence to model with uncertainty.

Deep learning techniques have been increasingly applied
to predict system and environment states (e.g., glucose level
forecasting) for ambient intelligence. However, previous works
mostly focus on generating predictions only and rarely ac-
count for the uncertainty inherent in the environment. Recent
advances such as Bayesian deep learning techniques can adapt
the prediction output stochastically as a sequence of posterior
probability distributions over a finite discrete-time domain.
Variational inference and Monte Carlo Dropout [13], [14]
are two common approaches to perform an approximated
inference on Bayesian Neural Networks. The first one builds
Bayesian Neural Networks [15] to represent a probabilistic
model that infers a distribution as output. However, the com-
plexity of inference prevents the prevalence of the model
in practice. By exploiting the dropout structure in a deep
neural network, these approaches turn the original Neural Net-
work model into a simple Bayesian Neural Network without
changing the structure and apply approximated inference with
the Monte Carlo approach. Existing works [14], [16], [17]
mostly focus uncertain estimation on single-time classification
or regression tasks. Moreover, existing methods often use the
loss functions of deep learning models (e.g., mean square error,
negative log-likelihood, KL divergence) as the only metrics
for the uncertainty estimation, which tend to over-estimate
or under-estimate the uncertainty level. Furthermore, these
metrics treat the uncertainty estimation of each individual
value in a predicted sequence separately, and thus lack an
integrated view about the uncertainty of sequential predictions.

To address these challenges, a solution from the CPS
community called STL-U [18] developed novel logic-based
criteria to measure uncertainty, which is general enough to
be applied to any sequential prediction model. It uses these
logic-calibrated uncertainty measurements to select and tune
the uncertainty estimation schema in deep learning models. At
training, the predictive monitoring approach conducts model
selection and tuning using STL-U criteria to obtain a well-
calibrated uncertainty estimation schema for the RNN-based
Bayesian sequential prediction. Intuitively, the satisfaction
degree of the predicted sequence (i.e., predicted future states)
should be same as the satisfaction degree of the target sequence
(i.e., the ground-truth values). STL-U criteria are designed to
measure the loss based on the monitoring results and thus
evaluates the quality of the uncertainty estimation schema. In

this way, the uncertainty estimation schema with the smallest
STL-U loss is selected. At runtime, the approach outputs
the current and future monitoring results to support ambient
intelligence. As a real-time operational scenario, it runs as a
continuous iterative process. In this way, the STL-U based pre-
dictive monitoring framework provides continuous predictive
monitoring of states for decision makers.

The STL-U predictive monitoring approach demonstrates
the feasibility of integrating formal methods and Bayesian
deep learning for the predictive monitoring of safety and
performance requirements in ambient intelligence. In addition,
the proposed STL-U criteria can be applied for the uncertainty
estimation in a wide range of deep learning applications.
Compared with traditional uncertainty estimation methods [9],
the proposed logic-based solution can lead to better uncertainty
calibration for sequential prediction tasks.

There are open research questions and several directions to
explore for future work to address modeling under uncertainty
in ambient intelligence. First, the scalability and efficiency
of STL-U and other formal monitoring algorithms for more
complex specifications (e.g., those with multiple layers of
nesting temporal operators) should be further investigated.
Secondly, how do humans in the loop affect modeling under
uncertainty? Last but not least, how to provide theoretical
analysis and guarantees of uncertainty in deep learning models
remains an important research question.

V. ROBUSTNESS AND DEPENDABILITY

The seamless integration of interconnected human-in-the-
loop and AI-enabled CPS in ambient intelligence brings about
several challenges in ensuring robustness and dependability.
How can we ensure robustness to environmental noise, human
errors, and accidental or malicious faults targeting the CPS
sensors, controllers, and ML components? How can we guar-
antee robustness given the unpredictable changes in the cyber-
physical context, environment, and human behavior? How can
we enforce that the ML models satisfy the desired reliability,
safety, and security requirements in a given application or set
of users? How can we gain the users trust in the robustness
and dependability of the system?

With the third wave of AI, future cognitive assistants are
envisioned to have human-like reasoning and contextual adap-
tation capabilities to understand the requirements, recognize
new situations, predict future risks, and quickly respond to
them. However, existing model-based and data-driven ap-
proaches to CPS resilience suffer from: i) reliance on simple
physical and behavioral models that cannot fully capture the
multidimensional context; ii) using black-box deep learning
models that have no knowledge of requirements or cannot
be generalized to new situations; iii) passive and delayed
detection of anomalies and property violations which prevents
timely execution of corrective actions and mitigating risks;
and iv) limited consideration of the humans in the loop to
gain users trust.

To address the second challenge, STLnet [19] developed a
novel formal logic enforced deep learning framework. It guides



the RNN learning process with auxiliary knowledge of model
properties, and produces a more robust model for improved
future predictions. STLnet is built with a teacher network and
a student network. The teacher network is equipped with a STL
trace generator, which incorporates the formalized model prop-
erties into the learning process. The main idea is that whenever
the student network fails to predict a trace (sequence) that
follows the model properties, the teacher network generates a
trace that is close to the trace returned by the student network
and satisfies the model properties simultaneously. The student
network then updates its parameters by learning from both the
target trace and outcome of the teacher network.

In the training phase, the goal is to teach STLnet to learn
from the “correct” traces that follow CPS properties. It first
builds a student network, which starts with the basic student
network, i.e., a general multivariate RNN. Next, it builds
a teacher network, which generates trace that satisfies the
model properties expressed in Signal Temporal Logic and
has the shortest distance to the original prediction. At last,
it trains the network through back propagation with a loss
function that is designed with two parts to guide the student
network to balance between emulating the teacher’s output and
predicting the target trace. The network is trained iteratively by
repeating these processes until convergence. STLnet is broadly
applicable to various sequential prediction tasks beyond smart
cities.

This work shows the promise of leveraging formal methods
to enhance the robustness and reliability of deep learning.
There are many open research problems in this exciting new
area that need further studies. For example, how to improve
the scalability of formal methods for the property specifica-
tions, which involve large-scale sensing data from hundreds
of thousands of geographically sparsely distributed locations
(sensors)? Can formal logic incorporate all types of properties
and constraints from the real world (e.g., physics)? How to
develop a generic specification language? How to leverage
formal methods to develop reliable deep learning models (e.g.,
robustness certification) for ambient intelligence?

Recent works on predictive runtime monitoring of safety
violations [20] and automated recovery [21] in CPS rely
on modeling and inference of human, cyber, and physical
context to anticipate impending unsafe systems states and
decide on the most effective actions to mitigate safety haz-
ards and prevent incidents. Anomaly detection methods that
combine data-driven optimization and ML with the domain
knowledge [20], [22], control-theoretic [23]–[25] and physics-
based [26] models or behavioral models of human cognition
and operation [27], [28] have shown to not only improve
the accuracy and timeliness of detection and recovery, but
also the transparency and interpretability of models. These
attributes are specially important for gaining users trust by
providing evidence and explanation on the selected recovery
and mitigation actions.

VI. REAL-TIME AND IMPLEMENTATION

For ambient intelligence to be effective it often needs
to operate in real-time. It also needs to address realistic
deployment problems. Many models (possibly very large) and
ML, NLP, and AI algorithms using those models can require
costly resources with their answers experiencing long delays.
Challenges include reducing the size of models without loss
of accuracy and reducing the time delays by more efficient
algorithms and by pushing the execution of those algorithms
to edge Internet devices or to wearables. These challenges
are being addressed along several exciting directions. For
example, [29] allows for building a ML solution first without
consideration of resource demands. Then a user specifies the
resource constraints of the device upon which the solution
will execute, e.g., on an edge or wearable device. A compiler
then automatically reduces the original model to meet the
specifications together with an estimate of loss of accuracy.
Continued work along this direction, but considering different
models, algorithms, devices, and time requirements could
prove valuable. Importantly, the newly developed solutions
must also address robustness and uncertainty issues as dis-
cussed above. It is also important to not only consider a
single solution at a time since the ambient intelligence must
synergistically combine many solutions.

The Internet and on-body devices need an infrastructure
to support seamless interactions with the exchange of in-
formation. The infrastructure needs to permit a very wide
variety of devices and associated applications and support
evolution of these over time. In ambient intelligence, systems
will be exchanging information not just data, so determining
what and when to exchange information are critical. Many
companies provide Internet architectures and associated ser-
vices. However, we do not believe that these are adequate
for the ambient intelligence needs of the future. In particular,
the current architectures provide support for data flow from
sensors to the cloud and back, but do not focus on how to
create and embed ambient intelligence.

VII. INTERACTIVITY

With the advance in sensing and actuation, current ambi-
ent intelligent systems support a diverse array of interaction
including verbal, audio, haptic, or video-based. Although a
lot of progress has been made to enable seamless and fluent
interaction for intelligent assistants, the complexity of spoken
language often makes this challenging due to ambiguity and
lack of completeness. Nonverbal interaction is often supported
by a haptic interface, visual/ graphical interface, or sensor
embedded objects. Recently, a lot of intelligent systems sup-
port nonverbal interaction through augmented reality, virtual
reality, and mixed reality platforms. Ambient intelligence can
consist of multiple modes of interaction among the constituent
assistants. For instance, it can provide navigational assistance
to visually impaired individuals using multimodal sensing to
sense the dynamic environment [30], [31], or assist in robotic
surgery [32], [33], or support augmented reality (AR), virtual
reality (VR), or mixed reality (MR) enhanced systems [34].



Another aspect of interaction is actuation. Actuation in
ambient intelligent systems often involves performing contex-
tual and adaptive interventions. EmIR [35], a social robot for
emotional well being of an user tracks user’s emotional state
through face identification and emotion classification. Upon
detecting user’s emotion (e.g., happy, angry, sad, disgusted)
it mimics user’s emotion by changing its physical appearance
and sends textual messages to the user to provide contextual
reminders and recommendations based on user profile and
medical condition. The goal of such actuation or intervention
is to persuade the users in activities to lift their emotional state
and keep them physically and cognitively active, e.g., reading
a book, taking a walk, or spending time with a friend.

Many of these modes of interaction are CPS. Most of
these interactions are supported centrally. Recently with the
concern of privacy and confidentiality, edge computing seems
like a feasible solution. This leads to research opportunities to
develop low-resource computational models that can support
such interaction in edge devices as well.

Ambient intelligent systems interact with one or more
users and the environment. For example, a humanoid, mobile
robotic nursing assistant interacts with nurses, patients and
tele-operators [36]. It lifts and transports a patient from one
location to another inside a hospital based on the command
from a nurse and interacts with a tele-operator through a
visual interface where the operator can see and control its
movements to ensure safety. For seamless interaction, the
challenges are that ambient intelligent systems should support
data flow between users and environment, protect user privacy,
user identification and tracking, and perform online learning
of user profile. It should support the communication among
constituent cognitive assistants, e.g., a cognitive assistant to
support elderly in performing daily activities should be able
to interact with the personal assistant of the corresponding
user (e.g., Alexa or Google Home) for weather updates and
schedule the user’s daily routine accordingly. They should
support identifying new users, learning new events, and de-
tecting relevant change in user and environment. For instance
intelligent systems are often trained on user’s voice, gait,
or facial features to identify and track user. A user might
experience change in their voice due to a disease or condition
(e.g., throat cancer, alcohol abuse, thyroid disorders). The
speaker identification module of a cognitive or ambient assis-
tant should be sensitive to such change. Ambient intelligence
design should have provision to accommodate such changes
to ensure effective interaction.

Recent advances in ambient and cognitive assistants result
in technical innovation to enable natural and often proactive
interaction. Natural language generation has been a popular
choice to support domain specific natural verbal interaction
for cognitive and ambient intelligent assistants. For natural
interaction, ambient intelligence should be aware of user
context. For example, providing hands-free interface for inter-
action when user’s hands are occupied [37] by tracking user’s
hand movement through depth camera or wearable sensors,
providing haptic feedback instead of auditory to not interrupt

user when they are busy or engaged (e.g., vibration in steering
wheel when user is driving).

Most cognitive and ambient intelligent systems are reactive.
Occasionally, such intelligent systems are designed to be
proactive for a set of predefined contexts. Such as, detecting
unsafe movement for users who are undergoing physical ther-
apy and post-injury rehabilitation [38], proactive monitoring
of surgical device malfunctions to avoid preventable surgical
errors [39], or alerting an individual if they forget their
keys or phone while leaving the home [40]. While proactive
monitoring can be effective for many ambient intelligence
applications, some safety-critical applications demand con-
sidering the trade-off between false positives (FP) and false
negatives (FN) for delivering intervention. For example, for
user activity monitor, FPs are not costly. But for ambient
intelligence in the ICU or emergency FPs are costly [41], [42].
In such cases being selectively proactive or even being more
reactive might be more effective, e.g., only give feedback when
asked and when the system is confident enough [11], [28].

Research in seamless coordination and integration of multi-
ple intelligent assistants in an ambient intelligent environment
is still minimally explored [1]. New research will benefit from
automatic techniques for metadata collection and common data
dictionary, time synchronization of different dependent mod-
ules of assistants, and context-aware actuation of individual
intelligent components.

VIII. CONFLICTS

Ambient intelligence requires seamless and synergistic in-
teractions between cognitive assistants found on the body
and in-situ. Due to the dynamics of environments, individual
personal behaviors, individuals’ objectives, and competing
resource needs, conflicts will arise. Therefore, it is necessary
for ambient intelligence to support detecting and resolving
conflicts. It is also possible that knowledge bases and current
context obtained from sensors which are held by a particular
cognitive assistant have ambiguous or even contradictory data.
These situations must also be detected and resolved in an
intelligent manner. Consequently, dynamically detecting and
resolving conflicts are major challenges for ambient intelli-
gence. Possible solution directions include building upon CPS
research that has addressed these issues in smart homes, smart
health, and smart cities. See Figure 3

For smart homes, DepSys [43] was a system that provided
comprehensive strategies to specify, detect, and resolve con-
flicts by addressing a spectrum of dependencies including
requirements, name, and control dependencies. DepSys also
handles the case when app developers fail to specify depen-
dencies. DepSys automatically resolves conflicts in controlling
sensors and offers a strategy for resolving control conflicts of
actuators. DepSys also detects conflict across smart devices by
considering their impact on the environment, e.g., one app is
running a humidifier and another app is running a dehumidifier
at the same time. In DepSys solutions are based on rules.
While some of these strategies can be applied to cognitive
assistance and ambient intelligence there are still open issues



Fig. 3. Conflicts in Ambient Intelligence: (1) In a smart home, one app is running a humidifier and another app is running a dehumidifier at the same time.
(2) People get conflicted health advice from different health care apps. (3) In a smart city, increase of pollution in near a park is caused by a primary decision
of redirecting traffic to that area.

with respect to how would rule based systems evolve over time
and how would they incorporate other complexities found in
ambient intelligence across much broader context than smart
homes.

In smart health, the EyePhy system [44] detected depen-
dencies across interventions of human-in-the-loop CPS med-
ical apps. It used a physiological simulator called HumMod
[45] that can model the complex interactions of the human
physiology using over 7800 variables capturing cardiovas-
cular, respiratory, renal, neural, endocrine, skeletal muscle,
and metabolic physiology. It uses a physiological simulator
to detect dependencies has many advantages. First, it al-
lows performing dependency analysis across a wide range of
physiological parameters. Second, it enables accounting for
drug dosage and the time gap between the interventions in
the dependency analysis. Third, the dependency analysis is
personalized, e.g., if someone has heart related problems, the
dependency analysis can be focused on the heart. An important
question is how does a cognitive assistant model and predict
future situations to determine if there might be a conflict in the
future. In EyePhy, a simulator was used. Simulators and other
techniques, e.g., those based on ML modeling and prediction
must be developed.

Cognitive assistants will help improve healthcare. However,
conflicting health information is one of the primary barriers
of self-management of chronic diseases and wellbeing. This
problem is growing with the prevalence of pervasive digital
health care applications. Increasing number of people now rely
on mobile health apps and online health websites to meet their
information needs and often receive conflicting health advice
from these sources. This problem is more prevalent and severe
in the setting of multi-morbidities. In addition, often medical
information can be conflicting with regular activity patterns
of an individual. Therefore, for cognitive assistance to be
effective in healthcare they must solve the problem of finding
conflicts in heterogeneous health applications including health
websites, health apps, online drug usage guidelines, daily
activity logging applications, and cognitive assistants.

Preclude2 [46] developed a comprehensive taxonomy of
conflicts based on the semantics of textual health advice and
activities of daily living. But, finding conflicts in health appli-
cations poses its own unique lexical and semantic challenges.

These include large structural variation between text and
hypothesis pairs of advice, finding conceptual overlap between
pairs of advice, inference of the semantics of an advice (i.e.,
what to do, why and how) and activities, and aligning activities
suggested in advice with the activities of daily living based
on their underlying dependencies and polarity. In Preclude2, a
novel semantic rule-based solution to detect conflicts in activi-
ties and health advice derived from heterogeneous sources was
developed. In addition, Preclude2 considers personalization
and context- awareness while detecting conflicts.

Now consider conflicts in smart cities. A smart city is a
system of systems, where each system represents a specific
domain (e.g., transportation, public safety, utility, emergency,
environment, city planning and operations) and each domain
consists of a set of services. For example, the public safety
domain may include police patrolling services, traffic violation
control services, and road accident management services. Each
service performs a set of functions to fulfill objectives, e.g., a
traffic violation control service penalizes drivers for speeding.
Functions may produce a set of effects upon completion, e.g.,
blocking a lane for road work. Effects that are directly actuated
by a service are primary effects. Effects that are the outcomes
of a primary effect are characterized as secondary effects such
as increase of pollution in an area due to a primary decision of
redirecting traffic to that area. Thus, a single action can create
a chain of subsequent effects. Developing ambient intelligence
in smart cities is very challenging including those challenges
related to detecting and resolving conflicts.

The CPS field has addressed conflict detection and resolu-
tion in smart cities in various ways. One approach uses formal
methods to specify requirements, i.e., by using Signal Tempo-
ral Logic (STL). But STL is not sufficient to represent all the
complexities of smart cities. Extensions to STL, e.g., SaSTLs
[47] has extended STL to handle spatial and aggregation type
requirements. Consequently, SaSTL can be used to specify
Point of Interests (PoIs), physical distances, spatial relations
of the PoIs and sensors, aggregation of signals over locations,
degree/percentage of satisfaction, and temporal requirements.
There are on-going challenges in expanding solutions in this
area to more and more complex situations found in ambient
intelligence.

Once conflicts are detected they must be resolved. This is



extremely complicated due to many things including uncer-
tainty in the environment, competing objectives, and resource
limitations. In CPS, one solution CityResolver [48] uses an
Integer Linear Programming based method to generate a small
set of resolution options. An open question is whether this
approach can be successful in the broader context of ambient
intelligence.

IX. COMPREHENSIVE CONTEXT

Almost all significant applications of AI and CPS require
context to perform adequately. Consequently, this is a well-
researched field. The in-situ sensors used as infrastructure
for ambient intelligence together with wearables can pro-
vide the basis for comprehensive context. This could include
personalized context as determined by sensing physiological,
psychological, behavioral, time, space, environmental, and
other parameters. However, to improve ambient intelligence
many challenges exist, including the following. One, what
context should be used at a given instance of time to provide
an intelligent response? Two, how to adjust the need and type
of context over time. Three, what context should be forgotten.
Four, what context should be remembered and how. Five, how
to detect the difference between an anomaly and new patterns.
Six, how to detect and address context that arises between
individuals or groups of people. Seven, how to detect behaviors
in complex scenes. Eight, how to intelligently use context that
may be shared yet maintain privacy.

CPS technologies of sensing, sensing with confidence,
multi-modal sensing, sensor fusion, actuations, and signal
processing, in general, can be applied to support the use
of comprehensive context. New CPS technologies such as
smart textiles and smart skin can increase the availability of
contextual data. However, we believe that the challenges listed
above have not yet been adequately addressed. We suggest that
new research in the integration of AI and CPS is needed to
solve these problems. For example, smart skin may be able to
detect high anxiety of a person, but the AI decision making
still does not recommend medication at this time due to other
physiological states, and physical context of where the person
is or what they are doing that perhaps indicates there should
be no medication that may make the person drowsy.

X. DYNAMIC ADAPTATION AND LEARNING

For cognitive assistants to become the backbone of ambient
intelligence they must meet the challenges to dynamically
adapt to current situations and learn over time. Adaptation
refers to having the cognitive assistant change its behavior
in response to its environment, but in this context the envi-
ronment has a very broad meaning. This includes adapting
to users’ goals, actions, and behaviors, other peoples general
behaviors, the users’ health, mental and physical, and the
state of the surrounding world, including environmental states,
predicted future states, failures and faults, and the ambient
intelligence infrastructure itself.

Given such a complicated problem there will be ambiguity,
conflict (see Section VIII), and uncertainty (see Section IV),

all of which are key challenges that must be addressed by
the adaptive decision making component of the cognitive
assistant. The adaptive decision making will result in various
outcomes. Learning what worked and what did not work and
incorporating that into the knowledge base of the cognitive
assistant is an essential requirement for the ability of the
cognitive assistant to maintain good performance over time.

Principles from CPS are needed to accurately sense the
environment in the broad sense as described above, and
adapt. CPS sensing technology can provide a comprehensive
collection of sensors and sensor fusion algorithms to improve
situation awareness, a critical component for ambient intel-
ligence. Adaptive and robust control theory can potentially
be applied to better place adaptation on a carefully ana-
lyzed foundation. Reinforcement learning and control theory
already exhibit shared principles. CPS have been applying
model-based design to improve reinforcement learning [49]
and applying verification techniques to safe exploration in
reinforcement learning [50], [51].

Since learning is the process of synthesizing new knowledge
and connecting new information and experiences with existing
knowledge, having robust and modifiable models is important.
Hence, techniques described in Section V for developing
robust models under uncertainty are applicable for adaptation
and control as well.

CPS have also applied control theory in a manner that
accounts for realistic implementation issues in tools such
as TrueTime and Jitterbug [52]. These types of results can
possibly support not only the theory and analysis of adaptation
and learning, but also its realistic implementation.

XI. SECURITY

Security is a general issue that must be addressed in almost
all systems. However, with the advance of smart devices
and the Internet of Things (IoT), new security issues are
created [53]–[55]. In [55], the authors provide a CPS security
attack taxonomy defined based on new problems for the (i)
cyber, (ii) the physical, and (iii) the cyber physical aspects
of a system. For example, cyber attacks include denial of
service and malware. Physical attacks include supply chain
attacks, signal jamming, sensor spoofing, transduction and
tampering as examples. Cyber physical attacks include identity
and device spoofing, denial of service, relay attacks, and
control system instability. While these attacks can occur in
all systems on the Internet, they take on potential safety
critical consequences when perpetrated in smart devices and
cognitive assistants that are, at least partially, relying on
physical devices. Consequences could include heart and in-
sulin pumps being manipulated and causing serious medical
problems including death, and cognitive assistants providing
wrong information and advice, also potentially causing serious
health outcomes.

Current CPS research is primarily focusing on all forms of
physical attacks, on control loop attacks, and attacks on ML
models used in CPS systems. Physical attacks often change
the sensor readings in various ways. Research directions



try to exploit redundant or related sensing modalities (e.g.,
temperature, pressure and volume sensors related to each
other by physics) to detect and resolve attacks [56]. Other
physical attacks include jamming of wireless communications.
Frequency hopping, spread spectrum and other techniques can
provide some resilience to jamming. Transduction attacks [53]
exploit the use of sensors in ways they were not originally
intended. See [53] for examples. A related attack called the
Dolphin attack [57] uses inaudible sounds to falsely send
commands to a device such as Alexa or Siri which can be
considered a basis for cognitive assistance. In general, physical
layer solutions must include better frequency filters and signal
processing to avoid having the resonances from ultrasound
to appear in the voice frequency range. Solutions are also
needed in the manufacture of circuits to reduce the effects of
resonance, increase the frequency of checking sensor output
by software, and even careful layout of components on system
boards to minimize unwanted coupling.

Feedback control loops are critical components of many
CPS, including industrial control systems, supervisory control
and data acquisition systems, autonomous vehicles, and med-
ical devices. In a control loop attack, the adversary usually
seeks to cause instability, thereby causing the system to
malfunction. Often, to detect these attacks requires a deep
understanding of the physics of the process being controlled
as well as the logic that controls the equipment. Standard
security solutions can reduce the threat surface, but they often
do not provide the necessary coverage in a complex system
with a variety of sensors and actuators. A promising approach
is fuzzing [58]. In fuzzing, inputs are automatically generated
where the goal is to force coverage of unexplored code. The
technique is particularly applicable to CPS where the range of
possible inputs is difficult to enumerate or bound.

ML attacks occur when an attacker develops adversarial
examples, i.e., inputs with small perturbations (sometimes
imperceptible) that cause a trained ML model to misclassify.
Solutions include work to increase the robustness of the data
driven models being used. See the above section on robustness
and dependability for solution directions that also apply to
security. Adversarial ML attacks are a relatively new threat to
CPS and there is still much research to understand the nature
of the attacks and how to build robust ML models that are not
susceptible to adversarial manipulation of the physical artifacts
(e.g., signs, images, audio, etc.) that are inputs to the system.
Cognitive assistants often rely on verbal exchanges which can
be attacked [59] so more secure audio capture and transcription
are required. ML, while it can be attacked, can also support
security. For example, deep learning algorithms can use speech
to identify people and subsequently could be applied to ensure
that the cognitive assistant is dealing with the correct person.

XII. SUMMARY

While ambient intelligence is an AI problem, it is also a
CPS problem because much of the information to be used
by ambient intelligence will come from smart devices and the
IOT. This paper identifies key challenges and opportunities for

the integration of AI and CPS. It also describes how various
CPS technologies (with extensions) can potentially support
guarantees and safety for ambient intelligent systems. Of
course, as we point out throughout the paper, many challenges
remain.

In this paper we are not comprehensive, rather we chose
representative and important research challenges to address.
Other key challenges and areas are not addressed, including,
privacy, fairness, biases, reasoning, interpretability, immersive
robotics, etc.
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